
Chapter 4 - Key Code Protection
                             

 Example: Quick Format 7.0

The first type of protection scheme I would like to explain is the Key Code Scheme. This
is used in Quick Format 7.0, which is a Public Domain Shareware program that is very
good at formatting floppies and designing your own labeling scheme those floppies. It is
definately worth the Shareware fee, so I suggest if you like the program to buy it, you
can probably find it on many online services and from user groups.

The author decided to put in a registration algorithm which requires its users to type in a
key code to access the advanced features of the program. When you first launch the
Quick Format 7.0 application, a dialog box comes up and asks you to enter in the key
code. If no key code is entered or you hit the return key, the program would continue to
run, but with the advanced options turned off.

The author is doing a couple of different little things. First, he is going to check
somewhere within his resource files to see if the current application being used is
registered. Usually there is a register byte in a resource somewhere in the app. He will
then do a compare to see if it really is registered. If it is, it continues like normal, if it isn't
registered, it will jump to another routine which turns off the advanced options and then
runs the app as normal.

There are a few options we have when deprotecting this app. We can use MacsBug to
trace through for the routine, then disassemble it to see where it does the compare; or
we can use ResEdit to find a resource that looks suspicious and delete it. The latter
might be a little tedious and it is always much more interesting tracing through code.

Now we will deprotect Quick Format 7.0. For best results and for speed and memory
purposes quit all other applications you are currently running. When you are back at the
Finder, hit "Command-Reset" or reach in back of your machine and press the hardware
interrupt switch, this will activate MacsBug. Your screen should have cleared and you
should be looking at a white screen with numbers on the left hand quadrant of the
screen running from TOP to BOTTOM. Those numbers are the various addresses and
registers in memory.

Running along the bottom of the screen from LEFT to RIGHT are two separate boxes.
The box on the big box with the numbers in it is a disassembly of the location in memory
you just broke into with MacsBug. The smaller box under it is the MacsBug command
line. On the far left you should notice a blinking cursor. From the command line you can
execute different commands to help you trace through programs, especially useful in
deprotecting software. At the command line type "?" (help). This will print up a list of
different topics. If you keep hitting return it will give you information about each topic in

the order they are shown on the screen. So play around and hit return a few times to get
an idea of what commands you can use.

Now that you are done playing let's get started. I almost always set a TRAP for an
_InitGraf. You can do this by typing
  'ATB INITGRAF'

A message should appear above the disassembly box saying 'A-Trap Break at A86E
(_InitGraf)' everytime. What this means is that the program will be stopped and
MacsBug will take over everytime the program tries to execute an _InitGraf. This works
the same way for all of the other trpas that the Mac toolbox has as well.

Ok, now type 'G' on the MacsBug command line. This should bring you right back to the
Finder where you started, and you will regain control of your Mac. Locate Quick Format
7.0 and launch it. Almost immediately your screen should change back into the
MacsBug screen. There should be a message saying 'A-Trap break at XXXXXXX :
A86E (_InitGraf)'. This means when you launched the program, MacsBug halted it
because the program tried to pass an _InitGraf trap. Now that the program is halted,
you can TRACE through the program to find the copy protection. You may not
successfully pinpoint the protection to any one specific area until you have traced
through a number of times.

Use the 'T' command to trace through. The object is to continue hitting 'T' and return
until the protection scheme comes up. Eventually it will. When you do get it up look at
the last few lines of code that was passed and you should see something like this:

Addr                        Instruction  Hex Bytes
583834                JSR SETUPMEN  4EBA FE14
583838                JSR INITIALI  4EAD 02E2
58383C                JSR INITGLOB  4EBA FEBE
583840                JSR VIRALCHE  4EBA FF22
583844                JSR CHECKMOR  4EBA F82A

Now, it's pretty obvious from just looking at the labels they used that you can determine
what is going on. In most cases people would not use LABELS like the ones above, but
since it is shareware and not a $500 commercial package I can see why the author
opted the easier route for programming ease. The first JSR would probably be him
initializing his menus and stuff. The second JSR would be to initialize the screen and the
fonts or whatever, the third JSR would be initializing the global variables he would need
and the fourth would be to check for any virus, persay. The fifth however is the routine
he uses to check if the program has been registered and brings up the dialog asking
you to enter a key code. If it hasn't been registered with the correct keycode the
program turns off some options. But, that is not necessary, as by omitting this JSR
CHECKMOR you will remove the check and the program will run with all options
available.

Write down the last 10 or so bytes on a piece of paper noting that 4EBA F82A is what
you will have to change. Since you want to omit these bytes you are best off using two
NOP (or No OPeration) commands. The hex value for a NOP is 4E71. Now run FEdit
and open up the Quick Format 7.0 program and do a HEX SEARCH for the bytes you
wrote down on the paper. Then change the proper values and you will be all set. Here is
what you should be looking for and the change you should be making:

Byte Changes (You should find the SEARCH string only ONE TIME!)

Search : 4EBA FE14 4EAD 02E2 4EBA FEBE 4EBA FF22 4EBA F82A
Change :  4E71 4E71

The protection showed above is obviously an easy scheme to get around, and to tell
you the truth, there really aren't that many hard schemes on the Mac, like there are or
were on the Apple II. It is important to check the routine you are disabling. Sometimes
variables (or globals) are passed in between different parts of protection schemes, if
you skip the entire protection scheme there is a pretty good chance you will miss a
variable (or global) getting passed and your program will crash on you in the future.

The best way to check is to use the program after you have initially deprotected it, if it
works ok, then chances are no globals were passed. In the example above, all of the
globals were passed in the prior two JSRs, which made things very easy.

